所有維度都非常好的數(shù)據(jù)質量不論在何種應用場合,它都是您的可選的探測器:高的計數(shù)率、動態(tài)范圍和能量分辨率,峰位精度布魯克提供基于NIST標樣剛玉(SRM1976c)整個角度范圍內的準直保證,面向未來的多用途采用了開放式設計并具有不受約束的模塊化特性的同時,將用戶友好性、操作便利性以及安全操作性發(fā)揮得淋漓盡致,這就是布魯克DAVINCI設計,布魯克獲得的TWIN-TWIN光路設計極大地簡化了D8ADVANCE的操作,使之適用于多種應用和樣品類型。為便于用戶使用,該系統(tǒng)可在4種不同的光束幾何之間進行自動切換。該系統(tǒng)無需人工干預,即可在Bragg-Brentano粉末衍射幾何和不良形狀的樣品、涂層和薄膜的平行光束幾何以及它們之間進行切換,且無需人工干預,是在環(huán)境下和非環(huán)境下對包括粉末、塊狀物體、纖維、片材和薄膜(非晶、多晶和外延)在內的所有類型的樣品進行分析的理想選擇。D8 DISCOVER 特點:UMC樣品臺可對重達5 kg的樣品進行掃描、大區(qū)域映射300mm的樣品、高通量篩選支持三個孔板。倒空間
X射線粉末衍射(XRPD)技術是重要的材料表征工具之一。粉末衍射圖中的許多信息,直接源于物相的原子排列。在D8ADVANCE和DIFFRAC.SUITE軟件的支持下,您將能簡單地實施常見的XRPD方法:鑒別晶相和非晶相,并測定樣品純度對多相混合物的晶相和非晶相進行定量分析微觀結構分析(微晶尺寸、微應變、無序…)熱處理或加工制造組件產生的大量殘余應力織構(擇優(yōu)取向)分析指標化、從頭晶體結構測定和晶體結構精修,由于具有出色的適應能力,使用D8ADVANCE,您就可對所有類型的樣品進行測量:從液體到粉末、從薄膜到固體塊狀物。杭州x射線檢測分析全能運動概念確保當樣品在移動時,感興趣區(qū)域始終在測角儀中心,從φ旋轉到XYZ平移和ψ傾斜,有5個自由度。
介孔分子篩SBA-15結構分析引言介孔分子篩SBA-15具有大晶胞的二維六方孔狀結構,具有更大的孔徑、更厚的孔壁和更高的孔容,而且具有更好的水熱穩(wěn)定性,有利于它在溫度較高、體系中有水的反應中應用,因此在催化、分離、生物及納米材料等領域有應用前景。SBA-15結構特穩(wěn)定性和其孔徑大小與性能有較大關聯(lián),而XRD是表征其結構的有效方法之一。由于SBA-15的晶胞較大,其衍射峰往往出現(xiàn)在非常低的角度,這導致很難從直射光和空氣散射中區(qū)分其衍射信號。目前,隨著衍射儀的發(fā)展,動態(tài)光路對的設計很好的解決了這類問題。實例SBA-15小角度XRD圖譜,五個衍射峰分別對應(100)、(110)、(200)、(300)、(220)。根據(jù)圖2示意圖,計算得到平均孔距
當石墨(002)衍射峰峰形對稱性很差時,如圖2,樣品中可能含有多種不同石墨化度的組分存在(當然,也可能是由于非晶碳或無定形碳的存在。需要對衍射峰進行分峰處理,得到各個子峰的峰位和積分強度值,如圖2所示。分別計算各子峰的石墨化度,再利用各子峰的積分強度為權重,歸一化樣品的石墨化度。圖2石墨實驗(藍色數(shù)據(jù)點)及分峰擬合圖譜(紅色:擬合圖譜,兩綠色為單峰擬合結果)石墨及其復合材料具有高溫下不熔融、導電導熱性能好以及化學穩(wěn)定性優(yōu)異等特點,應用于冶金、化工、航空航天等行業(yè)。特別是近年來鋰電池的快速發(fā)展,進一步加大了石墨材料的需求。工業(yè)上常將碳原料經過煅燒破碎、焙燒、高溫石墨化處理來獲取高性能人造石墨材料。石墨的質量對電池的性能有很大影響,石墨化度是一種從結構上表征石墨質量的方法之一。可在數(shù)秒內,輕松從先焦點切換到點焦點,從而擴大應用范圍,同事縮短重新匹配的時間。
LYNXEYEXE-T具有優(yōu)于380eV的能量分辨率,著實出色,是市面上性能的熒光過濾器探測器系統(tǒng)。借助它,您可在零強度損失下對由銅輻射激發(fā)的鐵熒光進行100%過濾,而且無需金屬濾波片,因此數(shù)據(jù)也不會存在偽影,如殘余K?和吸收邊。同樣,也無需用到會消除強度的二級單色器。布魯克提供獨有的LYNXEYEXE-T探測器保證:交貨時保證無壞道!LYNXEYEXE-T是LYNXEYE系列探測器的旗艦產品。它是目前市面上一款可采集0D、1D和2D數(shù)據(jù)的能量色散探測器,適用于所有波長(從Cr到Ag),具有準確的計數(shù)率和角分辨率,是所有X射線衍射和散射應用的理想選擇。樣品臺的卡口座允許在測角儀上快速準確地更換整個樣品臺,較大限度地提高實驗靈活性。杭州應力檢測分析
在DIFFRAC.EVA中,進行半定量分析,以現(xiàn)實孔板上不同相的濃度。倒空間
那么,碳晶體的晶胞參數(shù)可直接用來表征其石墨化度。XRD法利用石墨的晶格常數(shù)計算石墨化度G[1]:式中:0.3440為完全非石墨化炭的(002)晶面間距,nm;0.3354為理想石墨晶體的(002)晶面間距,nm。為實際石墨試樣(002)晶面間距,nm。實例不同石墨的石墨化度為了準確的確定值或(002)峰的峰位,需要在樣品中加入內標以校準。本文根據(jù)QJ2507-93[2]規(guī)范,用硅作為內標物,加入待測石墨樣品中,在瑪瑙研缽中混合研磨均勻。石墨及其復合材料具有高溫下不熔融、導電導熱性能好以及化學穩(wěn)定性優(yōu)異等特點,應用于冶金、化工、航空航天等行業(yè)。特別是近年來鋰電池的快速發(fā)展,進一步加大了石墨材料的需求。工業(yè)上常將碳原料經過煅燒破碎、焙燒、高溫石墨化處理來獲取高性能人造石墨材料。石墨的質量對電池的性能有很大影響,石墨化度是一種從結構上表征石墨質量的方法之一。倒空間