這種傳統(tǒng)方式幾乎不能檢測(cè)未知的新的惡意軟件種類(lèi),能檢測(cè)的已知惡意軟件經(jīng)過(guò)簡(jiǎn)單加殼或混淆后又不能檢測(cè),且使用多態(tài)變形技術(shù)的惡意軟件在傳播過(guò)程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒(méi)有固定的特征,使用該方法也不能檢測(cè)。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測(cè)試,確保主流的反**軟件無(wú)法識(shí)別這些惡意軟件,使得當(dāng)前的反**軟件通常對(duì)它們無(wú)能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫(kù),才能檢測(cè)這些惡意軟件。基于數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來(lái)訓(xùn)練分類(lèi)模型,可實(shí)現(xiàn)惡意軟件的智能檢測(cè),基于這些特征的檢測(cè)方法也取得了較高的準(zhǔn)確率。受文本分類(lèi)方法的啟發(fā),研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測(cè)方法,這類(lèi)方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒(méi)有明顯的語(yǔ)義信息,大量具有語(yǔ)義的信息丟失,很多語(yǔ)義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測(cè)方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù)。2025 年 IT 趨勢(shì)展望:深圳艾策的五大技術(shù)突破。首版次軟件測(cè)試報(bào)告
[3]軟件測(cè)試方法原則編輯1.盡早不斷測(cè)試的原則應(yīng)當(dāng)盡早不斷地進(jìn)行軟件測(cè)試。據(jù)統(tǒng)計(jì)約60%的錯(cuò)誤來(lái)自設(shè)計(jì)以前,并且修正一個(gè)軟件錯(cuò)誤所需的費(fèi)用將隨著軟件生存周期的進(jìn)展而上升。錯(cuò)誤發(fā)現(xiàn)得越早,修正它所需的費(fèi)用就越少。[4]測(cè)試用例由測(cè)試輸入數(shù)據(jù)和與之對(duì)應(yīng)的預(yù)期輸出結(jié)果這兩部分組成。[4]3.**測(cè)試原則(1)**測(cè)試原則。這是指軟件測(cè)試工作由在經(jīng)濟(jì)上和管理上**于開(kāi)發(fā)機(jī)構(gòu)的**進(jìn)行。程序員應(yīng)避免檢査自己的程序,程序設(shè)計(jì)機(jī)構(gòu)也不應(yīng)測(cè)試自己開(kāi)發(fā)的程序。軟件開(kāi)發(fā)者難以客觀(guān)、有效地測(cè)試自己的軟件,而找出那些因?yàn)閷?duì)需求的誤解而產(chǎn)生的錯(cuò)誤就更加困難。[4](2)合法和非合法原則。在設(shè)計(jì)時(shí),測(cè)試用例應(yīng)當(dāng)包括合法的輸入條件和不合法的輸入條件。[4](3)錯(cuò)誤群集原則。軟件錯(cuò)誤呈現(xiàn)群集現(xiàn)象。經(jīng)驗(yàn)表明,某程序段剩余的錯(cuò)誤數(shù)目與該程序段中已發(fā)現(xiàn)的錯(cuò)誤數(shù)目成正比,所以應(yīng)該對(duì)錯(cuò)誤群集的程序段進(jìn)行重點(diǎn)測(cè)試。[4](4)嚴(yán)格性原則。嚴(yán)格執(zhí)行測(cè)試計(jì)劃,排除測(cè)試的隨意性。[4](5)覆蓋原則。應(yīng)當(dāng)對(duì)每一個(gè)測(cè)試結(jié)果做***的檢查。[4](6)定義功能測(cè)試原則。檢查程序是否做了要做的事*是成功的一半,另一半是看程序是否做了不屬于它做的事。[4](7)回歸測(cè)試原則。應(yīng)妥善保留測(cè)試用例。杭州可靠軟件檢測(cè)報(bào)告安全掃描確認(rèn)軟件通過(guò)ISO 27001標(biāo)準(zhǔn),無(wú)高危漏洞記錄。
生成取值表。3把取值表與選擇的正交表進(jìn)行映射控件數(shù)Ln(取值數(shù))3個(gè)控件5個(gè)取值5的3次冪混合正交表當(dāng)控件的取值數(shù)目水平不一致時(shí)候,使用allp**rs工具生成1等價(jià)類(lèi)劃分法劃分值2邊界值分析法邊界值3錯(cuò)誤推斷法經(jīng)驗(yàn)4因果圖分析法關(guān)系5判定表法條件和結(jié)果6流程圖法流程路徑梳理7場(chǎng)景法主要功能和業(yè)務(wù)的事件8正交表先關(guān)注主要功能和業(yè)務(wù)流程,業(yè)務(wù)邏輯是否正確實(shí)現(xiàn),考慮場(chǎng)景法需要輸入數(shù)據(jù)的地方,考慮等價(jià)類(lèi)劃分法+邊界值分析法,發(fā)現(xiàn)程序錯(cuò)誤的能力**強(qiáng)存在輸入條件的組合情況,考慮因果圖判定表法多種參數(shù)配置組合情況,正交表排列法采用錯(cuò)誤推斷法再追加測(cè)試用例。需求分析場(chǎng)景法分析主要功能輸入的等價(jià)類(lèi)邊界值輸入的各種組合因果圖判定表多種參數(shù)配置正交表錯(cuò)誤推斷法經(jīng)驗(yàn)軟件缺陷軟件產(chǎn)品中存在的問(wèn)題,用戶(hù)所需要的功能沒(méi)有完全實(shí)現(xiàn)。
坐標(biāo)點(diǎn)(0,1)**一個(gè)完美的分類(lèi)器,它將所有的樣本都正確分類(lèi)。roc曲線(xiàn)越接近左上角,該分類(lèi)器的性能越好。從圖9可以看出,該方案的roc曲線(xiàn)非常接近左上角,性能較優(yōu)。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構(gòu)如圖10所示,后端融合方式用三種模態(tài)的特征分別訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,然后進(jìn)行決策融合,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。本次實(shí)驗(yàn)使用了80%的樣本訓(xùn)練,20%的樣本驗(yàn)證,訓(xùn)練50個(gè)迭代以便于找到較優(yōu)的epoch值。隨著迭代數(shù)的增加,后端融合模型的準(zhǔn)確率變化曲線(xiàn)如圖11所示,模型的對(duì)數(shù)損失變化曲線(xiàn)如圖12所示。從圖11和圖12可以看出,當(dāng)epoch值從0增加到5過(guò)程中,模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率快速提高,模型的訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失快速減少;當(dāng)epoch值從5到50的過(guò)程中,前端融合模型的訓(xùn)練準(zhǔn)確率和驗(yàn)證準(zhǔn)確率小幅提高,訓(xùn)練對(duì)數(shù)損失和驗(yàn)證對(duì)數(shù)損失緩慢下降;綜合分析圖11和圖12的準(zhǔn)確率和對(duì)數(shù)損失變化曲線(xiàn),選取epoch的較優(yōu)值為40。確定模型的訓(xùn)練迭代數(shù)為40后,進(jìn)行了10折交叉驗(yàn)證實(shí)驗(yàn)。自動(dòng)化測(cè)試發(fā)現(xiàn)7個(gè)邊界條件未處理的異常情況。
每一種信息的來(lái)源或者形式,都可以稱(chēng)為一種模態(tài)。例如,人有觸覺(jué),聽(tīng)覺(jué),視覺(jué),嗅覺(jué)。多模態(tài)機(jī)器學(xué)習(xí)旨在通過(guò)機(jī)器學(xué)習(xí)的方法實(shí)現(xiàn)處理和理解多源模態(tài)信息的能力。多模態(tài)學(xué)習(xí)從1970年代起步,經(jīng)歷了幾個(gè)發(fā)展階段,在2010年后***步入深度學(xué)習(xí)(deeplearning)階段。在某種意義上,深度學(xué)習(xí)可以被看作是允許我們“混合和匹配”不同模型以創(chuàng)建復(fù)雜的深度多模態(tài)模型。目前,多模態(tài)數(shù)據(jù)融合主要有三種融合方式:前端融合(early-fusion)即數(shù)據(jù)水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個(gè)**的數(shù)據(jù)集融合成一個(gè)單一的特征向量空間,然后將其用作機(jī)器學(xué)習(xí)算法的輸入,訓(xùn)練機(jī)器學(xué)習(xí)模型,如圖1所示。由于多模態(tài)數(shù)據(jù)的前端融合往往無(wú)法充分利用多個(gè)模態(tài)數(shù)據(jù)間的互補(bǔ)性,且前端融合的原始數(shù)據(jù)通常包含大量的冗余信息。因此,多模態(tài)前端融合方法常常與特征提取方法相結(jié)合以剔除冗余信息,基于領(lǐng)域經(jīng)驗(yàn)從每個(gè)模態(tài)中提取更高等別的特征表示,或者應(yīng)用深度學(xué)習(xí)算法直接學(xué)習(xí)特征表示,然后在特性級(jí)別上進(jìn)行融合。后端融合則是將不同模態(tài)數(shù)據(jù)分別訓(xùn)練好的分類(lèi)器輸出決策進(jìn)行融合,如圖2所示。隱私合規(guī)檢測(cè)確認(rèn)用戶(hù)數(shù)據(jù)加密符合GDPR標(biāo)準(zhǔn)要求。國(guó)家信息安全測(cè)評(píng)
可靠性評(píng)估連續(xù)運(yùn)行72小時(shí)出現(xiàn)2次非致命錯(cuò)誤。首版次軟件測(cè)試報(bào)告
本發(fā)明屬于惡意軟件防護(hù)技術(shù)領(lǐng)域::,涉及一種基于多模態(tài)深度學(xué)習(xí)的惡意軟件檢測(cè)方法。背景技術(shù):::惡意軟件是指在未明確提示用戶(hù)或未經(jīng)用戶(hù)許可的情況下,故意編制或設(shè)置的,對(duì)網(wǎng)絡(luò)或系統(tǒng)會(huì)產(chǎn)生威脅或潛在威脅的計(jì)算機(jī)軟件。常見(jiàn)的惡意軟件有計(jì)算機(jī)**(簡(jiǎn)稱(chēng)**)、特洛伊木馬(簡(jiǎn)稱(chēng)木馬)、計(jì)算機(jī)蠕蟲(chóng)(簡(jiǎn)稱(chēng)蠕蟲(chóng))、后門(mén)、邏輯**等。惡意軟件可能在用戶(hù)不知情的情況下竊取計(jì)算機(jī)用戶(hù)的信息和隱私,也可能非法獲得計(jì)算機(jī)系統(tǒng)和網(wǎng)絡(luò)資源的控制,破壞計(jì)算機(jī)和網(wǎng)絡(luò)的可信性、完整性和可用性,從而為惡意軟件控制者謀取非法利益。騰訊安全發(fā)布的《2017年度互聯(lián)網(wǎng)安全報(bào)告》顯示,2017年騰訊電腦管家pc端總計(jì)攔截**近30億次,平均每月攔截木馬**近,共發(fā)現(xiàn)**或木馬***。這些數(shù)目龐大、名目繁多的惡意軟件侵蝕著我國(guó)的***、經(jīng)濟(jì)、文化、***等各個(gè)領(lǐng)域的信息安全,帶來(lái)了前所未有的挑戰(zhàn)。當(dāng)前的反**軟件主要采用基于特征碼的檢測(cè)方法,這種方法通過(guò)對(duì)代碼進(jìn)行充分研究,獲得惡意軟件特征值(即每種惡意軟件所獨(dú)有的十六進(jìn)制代碼串),如字節(jié)序列、特定的字符串等,通過(guò)匹配查找軟件中是否包含惡意軟件特征庫(kù)中的特征碼來(lái)判斷其是否為惡意軟件。首版次軟件測(cè)試報(bào)告