12)把節(jié)裝入到vmm的地址空間;(13)可選頭部的sizeofcode域取值不正確;(14)含有可疑標(biāo)志。此外,惡意軟件和良性軟件間以下格式特征也存在明顯的統(tǒng)計(jì)差異:(1)證書(shū)表是軟件廠商的可認(rèn)證的聲明,惡意軟件很少有證書(shū)表,而良性軟件大部分都有軟件廠商可認(rèn)證的聲明;(2)惡意軟件的調(diào)試數(shù)據(jù)也明顯小于正常文件的,這是因?yàn)閻阂廛浖榱嗽黾诱{(diào)試的難度,很少有調(diào)試數(shù)據(jù);(3)惡意軟件4個(gè)節(jié)(.text、.rsrc、.reloc和.rdata)的characteristics屬性和良性軟件的也有明顯差異,characteristics屬性通常**該節(jié)是否可讀、可寫(xiě)、可執(zhí)行等,部分惡意軟件的代碼節(jié)存在可寫(xiě)異常,只讀數(shù)據(jù)節(jié)和資源節(jié)存在可寫(xiě)、可執(zhí)行異常等;(4)惡意軟件資源節(jié)的資源個(gè)數(shù)也明顯少于良性軟件的,如消息表、組圖表、版本資源等,這是因?yàn)閻阂廛浖苌偈褂脠D形界面資源,也很少有版本信息。pe文件很多格式屬性沒(méi)有強(qiáng)制限制,文件完整性約束松散,存在著較多的冗余屬性和冗余空間,為pe格式惡意軟件的傳播和隱藏創(chuàng)造了條件。此外,由于惡意軟件為了方便傳播和隱藏,盡一切可能的減小文件大小,文件結(jié)構(gòu)的某些部分重疊,同時(shí)對(duì)一些屬性進(jìn)行了特別設(shè)置以達(dá)到anti-dump、anti-debug或抗反匯編。第三方測(cè)評(píng)顯示軟件運(yùn)行穩(wěn)定性達(dá)99.8%,未發(fā)現(xiàn)重大系統(tǒng)崩潰隱患。軟件檢測(cè)報(bào)告多久
所述生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計(jì)所有類(lèi)別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個(gè)dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個(gè)引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對(duì)當(dāng)前軟件樣本的所有dll和api信息進(jìn)行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。進(jìn)一步的,所述生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。進(jìn)一步的,所述從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征;所述特定格式異常包括:(1)代碼從**后一節(jié)開(kāi)始執(zhí)行,(2)節(jié)頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節(jié)之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節(jié)名稱(chēng),(7)可疑的頭部***,(8)來(lái)自,(9)導(dǎo)入地址表被修改,(10)多個(gè)pe頭部,(11)可疑的重定位信息,。軟件信息系統(tǒng)安全測(cè)評(píng)機(jī)構(gòu)排名艾策檢測(cè)以智能算法驅(qū)動(dòng)分析,為工業(yè)產(chǎn)品提供全生命周期質(zhì)量管控解決方案!
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線(xiàn)如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。
在數(shù)字化轉(zhuǎn)型加速的,軟件檢測(cè)公司已成為保障各行業(yè)信息化系統(tǒng)穩(wěn)定運(yùn)行的力量。深圳艾策信息科技有限公司作為國(guó)內(nèi)軟件檢測(cè)公司領(lǐng)域的企業(yè),始終以技術(shù)創(chuàng)新為驅(qū)動(dòng)力,深耕電力能源、科研教育、政企單位、研發(fā)科技及醫(yī)療機(jī)構(gòu)等垂直場(chǎng)景,為客戶(hù)提供從需求分析到運(yùn)維優(yōu)化的全鏈條質(zhì)量保障服務(wù)。以專(zhuān)業(yè)能力筑牢行業(yè)壁壘作為專(zhuān)注于軟件檢測(cè)的技術(shù)型企業(yè),艾策科技通過(guò)AI驅(qū)動(dòng)的智能檢測(cè)平臺(tái),實(shí)現(xiàn)了測(cè)試流程的自動(dòng)化、化與智能化。其產(chǎn)品——軟件檢測(cè)系統(tǒng),整合漏洞掃描、壓力測(cè)試、合規(guī)性驗(yàn)證等20余項(xiàng)功能模塊,可快速定位代碼缺陷、性能瓶頸及安全風(fēng)險(xiǎn),幫助客戶(hù)將軟件故障率降低60%以上。針對(duì)電力能源行業(yè),艾策科技開(kāi)發(fā)了電網(wǎng)調(diào)度系統(tǒng)專(zhuān)項(xiàng)檢測(cè)方案,成功保障某省級(jí)電力公司百萬(wàn)級(jí)用戶(hù)數(shù)據(jù)安全;在科研教育領(lǐng)域,其實(shí)驗(yàn)室管理軟件檢測(cè)服務(wù)覆蓋全國(guó)50余所高校,助力科研數(shù)據(jù)存儲(chǔ)與分析的合規(guī)性升級(jí)。此外,公司為政企單位政務(wù)云平臺(tái)、研發(fā)科技企業(yè)創(chuàng)新產(chǎn)品、醫(yī)療機(jī)構(gòu)智慧醫(yī)療系統(tǒng)提供的定制化檢測(cè)服務(wù),均獲得客戶(hù)高度認(rèn)可。差異化服務(wù)塑造行業(yè)作為軟件檢測(cè)公司,艾策科技突破傳統(tǒng)檢測(cè)模式,推出“檢測(cè)+培訓(xùn)+咨詢(xún)”一體化服務(wù)體系。通過(guò)定期發(fā)布行業(yè)安全白皮書(shū)、舉辦技術(shù)研討會(huì)。無(wú)障礙測(cè)評(píng)認(rèn)定視覺(jué)障礙用戶(hù)支持功能缺失4項(xiàng)。
這種傳統(tǒng)方式幾乎不能檢測(cè)未知的新的惡意軟件種類(lèi),能檢測(cè)的已知惡意軟件經(jīng)過(guò)簡(jiǎn)單加殼或混淆后又不能檢測(cè),且使用多態(tài)變形技術(shù)的惡意軟件在傳播過(guò)程中不斷隨機(jī)的改變著二進(jìn)制文件內(nèi)容,沒(méi)有固定的特征,使用該方法也不能檢測(cè)。新出現(xiàn)的惡意軟件,特別是zero-day惡意軟件,在釋放到互聯(lián)網(wǎng)前,都使用主流的反**軟件測(cè)試,確保主流的反**軟件無(wú)法識(shí)別這些惡意軟件,使得當(dāng)前的反**軟件通常對(duì)它們無(wú)能為力,只有在惡意軟件大規(guī)模傳染后,捕獲到這些惡意軟件樣本,提取簽名和更新簽名庫(kù),才能檢測(cè)這些惡意軟件?;跀?shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的惡意軟件檢測(cè)方法將可執(zhí)行文件表示成不同抽象層次的特征,使用這些特征來(lái)訓(xùn)練分類(lèi)模型,可實(shí)現(xiàn)惡意軟件的智能檢測(cè),基于這些特征的檢測(cè)方法也取得了較高的準(zhǔn)確率。受文本分類(lèi)方法的啟發(fā),研究人員提出了基于二進(jìn)制可執(zhí)行文件字節(jié)碼n-grams的惡意軟件檢測(cè)方法,這類(lèi)方法提取的特征覆蓋了整個(gè)二進(jìn)制可執(zhí)行文件,包括pe文件頭、代碼節(jié)、數(shù)據(jù)節(jié)、導(dǎo)入節(jié)、資源節(jié)等信息,但字節(jié)碼n-grams特征通常沒(méi)有明顯的語(yǔ)義信息,大量具有語(yǔ)義的信息丟失,很多語(yǔ)義信息提取不完整。此外,基于字節(jié)碼n-grams的檢測(cè)方法提取代碼節(jié)信息考慮了機(jī)器指令的操作數(shù)。企業(yè)數(shù)字化轉(zhuǎn)型指南:艾策科技的實(shí)用建議。北京軟件產(chǎn)品測(cè)試
第三方實(shí)驗(yàn)室驗(yàn)證數(shù)據(jù)處理速度較上代提升1.8倍。軟件檢測(cè)報(bào)告多久
將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的特征,融合成一個(gè)單一的特征向量空間,然后將其作為深度神經(jīng)網(wǎng)絡(luò)模型的輸入,訓(xùn)練多模態(tài)深度集成模型;(2)方案二:首先利用訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型,合并訓(xùn)練的三個(gè)深度神經(jīng)網(wǎng)絡(luò)模型的決策輸出,并將其作為感知機(jī)的輸入,訓(xùn)練得到**終的多模態(tài)深度集成模型;(3)方案三:采用中間融合(intermediate-fusion)方法,首先使用三個(gè)深度神經(jīng)網(wǎng)絡(luò)分別學(xué)習(xí)訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示,并合并學(xué)習(xí)得到的訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示融合成一個(gè)單一的特征向量空間,然后將其作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入,訓(xùn)練得到多模態(tài)深度神經(jīng)網(wǎng)絡(luò)模型。步驟s3、將軟件樣本中的類(lèi)別未知的軟件樣本作為測(cè)試樣本。軟件檢測(cè)報(bào)告多久