評審步驟以及評審記錄機(jī)制。3)評審項由上層****。通過培訓(xùn)參加評審的人員,使他們理解和遵循相牢的評審政策,評審步驟。(II)建立測試過程的測量程序測試過程的側(cè)量程序是評價測試過程質(zhì)量,改進(jìn)測試過程的基礎(chǔ),對監(jiān)視和控制測試過程至關(guān)重要。測量包括測試進(jìn)展,測試費(fèi)用,軟件錯誤和缺陷數(shù)據(jù)以及產(chǎn)品淵量等。建立淵試測量程序有3個子目標(biāo):1)定義**范圍內(nèi)的測試過程測量政策和目標(biāo)。2)制訂測試過程測量計劃。測量計劃中應(yīng)給出收集,分析和應(yīng)用測量數(shù)據(jù)的方法。3)應(yīng)用測量結(jié)果制訂測試過程改進(jìn)計劃。(III)軟件質(zhì)量評價軟件質(zhì)量評價內(nèi)容包括定義可測量的軟件質(zhì)量屬性,定義評價軟件工作產(chǎn)品的質(zhì)量目標(biāo)等項工作。軟件質(zhì)量評價有2個子目標(biāo):1)管理層,測試組和軟件質(zhì)量保證組要制訂與質(zhì)量有關(guān)的政策,質(zhì)量目標(biāo)和軟件產(chǎn)品質(zhì)量屬性。2)測試過程應(yīng)是結(jié)構(gòu)化,己測量和己評價的,以保證達(dá)到質(zhì)量目標(biāo)。第五級?優(yōu)化,預(yù)防缺陷和質(zhì)量控制級由于本級的測試過程是可重復(fù),已定義,已管理和己測量的,因此軟件**能夠優(yōu)化調(diào)整和持續(xù)改進(jìn)測試過程。測試過程的管理為持續(xù)改進(jìn)產(chǎn)品質(zhì)量和過程質(zhì)量提供指導(dǎo),并提供必要的基礎(chǔ)設(shè)施。優(yōu)化,預(yù)防缺陷和質(zhì)量控制級有3個要實現(xiàn)的成熟度目標(biāo):。安全掃描確認(rèn)軟件通過ISO 27001標(biāo)準(zhǔn),無高危漏洞記錄。軟件性能效率評測中心
收藏查看我的收藏0有用+1已投票0軟件測試技術(shù)編輯鎖定討論上傳視頻軟件測試技術(shù)是軟件開發(fā)過程中的一個重要組成部分,是貫穿整個軟件開發(fā)生命周期、對軟件產(chǎn)品(包括階段性產(chǎn)品)進(jìn)行驗證和確認(rèn)的活動過程,其目的是盡快盡早地發(fā)現(xiàn)在軟件產(chǎn)品中所存在的各種問題——與用戶需求、預(yù)先定義的不一致性。檢查軟件產(chǎn)品的bug。寫成測試報告,交于開發(fā)人員修改。軟件測試人員的基本目標(biāo)是發(fā)現(xiàn)軟件中的錯誤。中文名軟件測試技術(shù)簡介單元測試、集成測試主要步驟測試設(shè)計與開發(fā)常見測試回歸測試功能測試目錄1主要步驟2基本功能3測試目標(biāo)4測試目的5常見測試6測試分類7測試工具8同名圖書?圖書1?圖書2?圖書3?圖書4軟件測試技術(shù)主要步驟編輯1、測試計劃2、測試設(shè)計與開發(fā)3、執(zhí)行測試軟件測試技術(shù)基本功能編輯1、驗證(Verification)2、確認(rèn)(Validation)軟件測試人員應(yīng)具備的知識:1、軟件測試技術(shù)2、被測試應(yīng)用程序及相關(guān)應(yīng)用領(lǐng)域軟件測試技術(shù)測試目標(biāo)編輯1、軟件測試人員所追求的是盡可能早地找出軟件的錯誤;2、軟件測試人員必須確保找出的軟件錯誤得以關(guān)閉。軟件驗收測試報告價格艾策檢測針對智能穿戴設(shè)備開發(fā)動態(tài)壓力測試系統(tǒng),確保人機(jī)交互的舒適性與安全性。
后端融合模型的10折交叉驗證的準(zhǔn)確率是%,對數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個隱含層,其***個隱含層的神經(jīng)元個數(shù)是128,第二個隱含層的神經(jīng)元個數(shù)是64,第三個隱含層的神經(jīng)元個數(shù)是32,且3個隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個隱含層,其***個隱含層的神經(jīng)元個數(shù)是64,其第二個隱含層的神經(jīng)元個數(shù)是32,且2個隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個隱含層,其***個隱含層的神經(jīng)元個數(shù)是512,第二個隱含層的神經(jīng)元個數(shù)是384,第三個隱含層的神經(jīng)元個數(shù)是256,第四個隱含層的神經(jīng)元個數(shù)是125。
將訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入深度神經(jīng)網(wǎng)絡(luò),訓(xùn)練多模態(tài)深度集成模型;(1)方案一:采用前端融合(early-fusion)方法,首先合并訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的特征,融合成一個單一的特征向量空間,然后將其作為深度神經(jīng)網(wǎng)絡(luò)模型的輸入,訓(xùn)練多模態(tài)深度集成模型;(2)方案二:首先利用訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖分別訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型,合并訓(xùn)練的三個深度神經(jīng)網(wǎng)絡(luò)模型的決策輸出,并將其作為感知機(jī)的輸入,訓(xùn)練得到**終的多模態(tài)深度集成模型;(3)方案三:采用中間融合(intermediate-fusion)方法,首先使用三個深度神經(jīng)網(wǎng)絡(luò)分別學(xué)習(xí)訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示,并合并學(xué)習(xí)得到的訓(xùn)練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖的高等特征表示融合成一個單一的特征向量空間,然后將其作為下一個深度神經(jīng)網(wǎng)絡(luò)的輸入,訓(xùn)練得到多模態(tài)深度神經(jīng)網(wǎng)絡(luò)模型。步驟s3、將軟件樣本中的類別未知的軟件樣本作為測試樣本。對比分析顯示資源占用率高于同類產(chǎn)品均值26%。
軟件測試技術(shù)測試分類編輯軟件測試的狹義論和廣義論——靜態(tài)和動態(tài)的測試軟件測試技術(shù)軟件測試的辨證論——正向思維和反向思維軟件測試的風(fēng)險論——測試是評估軟件測試的經(jīng)濟(jì)學(xué)觀點——為盈利而測試軟件測試的標(biāo)準(zhǔn)論——驗證和確認(rèn)軟件測試技術(shù)測試工具編輯幾種常用的測試工具:1、軟件錯誤管理工具Bugzilla2、功能測試工具WinRunner3、負(fù)載測試工具LoadRunner4、測試管理工具TestDirector軟件測試技術(shù)同名圖書編輯軟件測試技術(shù)圖書1書名:軟件測試技術(shù)軟件測試技術(shù)作者:曲朝陽出版社:**水利水電出版社出版時間:2006ISBN:97開本:16定價:元內(nèi)容簡介本書詳盡地闡述了軟件測試領(lǐng)域中的一些基本理論和實用技術(shù)。首先從軟件測試的基本原則,以及常用的軟件測試技術(shù)入手,介紹了與軟件測試領(lǐng)域相關(guān)的基礎(chǔ)知識。然后,分別從單元測試、集成測試和系統(tǒng)測試3個層面深入分析了如何選擇和設(shè)計有效的測試用例,制定合適的測試策略等主題。**后,討論了面向?qū)ο蟮能浖y試和軟件測試自動化技術(shù)。附錄中還附錄了常見的軟件錯誤,供讀者參閱。本書作為軟件測試的實際應(yīng)用參考書,除了力求突出基本知識和基本概念的表述外,更注重軟件測試技術(shù)的運(yùn)用。數(shù)字化轉(zhuǎn)型中的挑戰(zhàn)與應(yīng)對:艾策科技的經(jīng)驗分享。軟件系統(tǒng)測評
多平臺兼容性測試顯示Linux環(huán)境下存在驅(qū)動適配問題。軟件性能效率評測中心
在不知道多長的子序列能更好的表示可執(zhí)行文件的情況下,只能以固定窗口大小在字節(jié)碼序列中滑動,產(chǎn)生大量的短序列,由機(jī)器學(xué)習(xí)方法選擇可能區(qū)分惡意軟件和良性軟件的短序列作為特征,產(chǎn)生短序列的方法叫n-grams?!?80074ff13b2”的字節(jié)碼序列,如果以3-grams產(chǎn)生連續(xù)部分重疊的短序列,將得到“080074”、“0074ff”、“74ff13”、“ff13b2”四個短序列。每個短序列特征的權(quán)重表示有多種方法。**簡單的方法是如果該短序列在具體樣本中出現(xiàn),就表示為1;如果沒有出現(xiàn),就表示為0,也可以用。本實施例采用3-grams方法提取特征,3-grams產(chǎn)生的短序列非常龐大,將產(chǎn)生224=(16,777,216)個特征,如此龐大的特征集在計算機(jī)內(nèi)存中存儲和算法效率上都是問題。如果短序列特征的tf較小,對機(jī)器學(xué)習(xí)可能沒有意義,選取了tf**高的5000個短序列特征,計算每個短序列特征的,每個短序列特征的權(quán)重是判斷其所在軟件樣本是否為惡意軟件的依據(jù),也是區(qū)分每個軟件樣本的依據(jù)。(4)前端融合前端融合的架構(gòu)如圖4所示,前端融合方式將三種模態(tài)的特征合并,然后輸入深度神經(jīng)網(wǎng)絡(luò),隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過擬合,優(yōu)化器。軟件性能效率評測中心