通過對顯微光學(xué)系統(tǒng)的重新設(shè)計,將FHIRM-TPM2.0的成像視場擴展至420×420平方微米,顯微物鏡的工作距離擴展至1mm,實現(xiàn)無創(chuàng)成像。嵌入可拆卸的快速軸向掃描模塊,實現(xiàn)深度180微米的三維體成像和多平面快速切換的實時成像。該模塊由一個快速電動變焦鏡頭和一對中繼鏡頭組成,在不同深度成像時保持放大率恒定。其中,變焦模塊重1.8克,科研人員可以根據(jù)實驗要求自由拆卸。此外,新型微型成像探頭可以瞬間插拔,極大簡化了實驗操作,避免了長時間實驗對動物的干擾。反復(fù)裝卸探針追蹤同批神經(jīng)元時,視場旋轉(zhuǎn)角度小于0.07弧度,邊界偏差小于35微米。雙光子顯微鏡是結(jié)合了雙光子技術(shù)和掃描共聚顯微鏡的一種新型熒光顯微鏡。美國布魯克雙光子顯微鏡熒光探測
摻雜可以明顯影響碳點(CDs)的發(fā)射和激發(fā)特性,使雙光子碳點(TP-CDs)具有本征雙光子激發(fā)特性和605nm的紅光發(fā)射特性。在638nm激光照射下,除了長波激發(fā)和發(fā)射外,還可以實現(xiàn)活性氧(ROS)的產(chǎn)生,這為光動力技術(shù)提供了巨大的可能性。更重要的是,通過各種表征和理論模擬證實,摻雜誘導(dǎo)的N雜環(huán)在TP-CDs與RNA的親和力中起關(guān)鍵作用。這種親和力不僅為實現(xiàn)核仁特異性自我靶向提供了可能,而且通過ROS斷裂RNA鏈解離TP-CDs@RNA復(fù)合物,賦予治療過程中的熒光變異。TP-CDs結(jié)合了ROS的產(chǎn)生能力、光動力療法(PDT)過程中的熒光變化、長波激發(fā)和發(fā)射特性以及核仁的特異性自靶向性,可以認為是一種結(jié)合核仁動態(tài)變化實時處理的智能CDs。bruker雙光子顯微鏡價位成像平臺倒置雙光子顯微鏡啟用顯微鏡自帶調(diào)焦設(shè)備。
雙光子的來源:飛秒激光的雙光子吸收理論早在1931年就由諾貝爾獎獲得者MariaGoeppertMayer提出,并在30年后因為激光而得到實驗驗證,但WinfriedDenk用了近30年才發(fā)明了雙光子顯微鏡。要理解雙光子的技術(shù)挑戰(zhàn)和飛秒激光發(fā)揮的重要作用,首先要理解非線性過程。雙光子吸收相當(dāng)于和頻產(chǎn)生的非線性過程,需要極高的電場強度,電場取決于聚焦光斑的大小和激光脈沖寬度。聚焦光斑越小,脈沖寬度越窄,雙光子吸收效率越高。對于衍射極限顯微鏡,聚焦在樣品上的光斑大小只與物鏡NA和激光波長有關(guān),所以關(guān)鍵變量只有激光脈沖寬度?;谝陨戏治?,能夠輸出高重復(fù)率(100MHz)的超短脈沖(100fs量級)的飛秒激光已經(jīng)成為雙光子顯微鏡的標(biāo)準(zhǔn)激發(fā)光源。這再次顯示了雙光子顯微鏡的優(yōu)勢:雙光子吸收只能在焦平面形成,而在焦平面之外,由于光強較低,無法激發(fā),所以雙光子成像更清晰。
隨著技術(shù)的發(fā)展,雙光子顯微鏡的性能得到不斷地優(yōu)化,結(jié)合它的特點,大致可以分成深和活兩個方面的提升。要想讓激發(fā)激光進入更深的層面,大致可從兩個方面入手,裝置優(yōu)化與標(biāo)本改造。關(guān)于裝置優(yōu)化,我們可以把激光束變得更細,使能量更加集中,就能讓激光穿透更深。關(guān)于標(biāo)本,其中影響光傳播的主要是物質(zhì)吸收和散射,解決這個問題,我們需要對樣本進行透明化處理。一種方法是運用某種物質(zhì)將標(biāo)本浸泡,使其中的物質(zhì)(主要是脂質(zhì))被破壞或溶解。另一種方法是運用電泳將脂質(zhì)電解,讓標(biāo)本的“透明度”提高。上海雙光子顯微鏡就找因斯蔻浦。
使用雙光子顯微鏡可以以亞細胞分辨率對鈣離子傳感器和谷氨酸傳感器成像,從而測量不透明大腦深處的活動;成像膜電壓變化能直接反映神經(jīng)元活動,但神經(jīng)元活動的速度對于常規(guī)的2PM來說太快。目前電壓成像主要通過寬場顯微鏡實現(xiàn),但它的空間分辨率較差并且只是于淺層深度。因此要在不透明的大腦中以高空間分辨率對膜電壓變化進行成像,需要較提高2PM的成像速率。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個空間上分離且時間延遲的焦點陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中,如圖2所示。光源是具有1MHz重復(fù)頻率的920nm的激光器,通過FACED模塊可產(chǎn)生80個脈沖焦點,其脈沖時間間隔為2ns。這些焦點是虛擬源的圖像,虛擬源越遠,物鏡處的光束尺寸越大,焦點越小。光束沿y軸比x軸能更好地充滿物鏡,從而導(dǎo)致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。由于其非侵入性和高分辨率的特點,雙光子顯微鏡成為了研究神經(jīng)科學(xué)、ai癥研究、免疫學(xué)等領(lǐng)域的重要工具。國內(nèi)2PPLUS雙光子顯微鏡光損傷
雙光子顯微鏡的原理是什么?美國布魯克雙光子顯微鏡熒光探測
n摻雜可以明顯影響碳點(CDs)的發(fā)射和激發(fā)特性,使雙光子碳點(TP-CDs)具有本征雙光子激發(fā)特性和605nm紅光發(fā)射特性。在638nm激光的照射下,除了長波激發(fā)和發(fā)射外,還能產(chǎn)生活性氧,這為光動力技術(shù)提供了極大的可能性。更重要的是,各種表征和理論模擬證實了摻雜誘導(dǎo)的N雜環(huán)在TP-CDs與RNA的親和力中起著關(guān)鍵作用。這種親和力不僅可以實現(xiàn)核仁特異性的自我靶向,還可以通過ROS斷裂RNA鏈來解離TP-CDs@RNA復(fù)合物,從而在治療過程中產(chǎn)生熒光變化。TP-CDs結(jié)合了ROS產(chǎn)生的能力、PDT過程中的熒光變化、長波激發(fā)和發(fā)射特性以及核仁特異性自靶向性,因此可以認為是一種實時處理核仁動態(tài)變化的智能CDs。美國布魯克雙光子顯微鏡熒光探測