如今,無人機(jī)在我們生活中的應(yīng)用越來越廣。例如無人機(jī)巡檢安防領(lǐng)域,無人機(jī)能夠到達(dá)人無法觸及的一些角度,能夠很大程度上擴(kuò)大安防檢查的覆蓋面。在工地、電力、化工等行業(yè),晚上巡檢是必不可少的環(huán)節(jié),并且晚上巡檢還能發(fā)現(xiàn)白天無法看到的一些問題,在白天,一般的相機(jī)效果很好,能夠看到非常清晰的監(jiān)控畫面,但是到了晚上,就心有余而力不足。這是因為以前大多數(shù)相機(jī)都是可見光相機(jī),在晚上光源不佳時,就會出現(xiàn)成像模糊、漆黑。這種解決辦法是采用紅外熱像儀傳感器,即使在漆黑的夜晚,通過紅外成像也能展現(xiàn)出清晰的畫面。RK3399搭載AI智能算法,實現(xiàn)目標(biāo)識別與跟蹤。寧夏目標(biāo)跟蹤聯(lián)系方式
人工智能起源于上個世紀(jì)五十年代,被譽(yù)為新時代工業(yè)發(fā)展的引擎。隨著技術(shù)的發(fā)展,為了使得計算機(jī)可以擁有像人眼一樣感知、分析、處理現(xiàn)實世界的能力,六十年代初,人工智能衍生出了一個重要的分支,計算機(jī)視覺。在計算機(jī)視覺的研究過程中,學(xué)者們?yōu)榱岁U述“根據(jù)目標(biāo)在視頻中的某一幀狀態(tài)來估計其在后續(xù)幀中的狀態(tài)”,一個新的學(xué)科——目標(biāo)跟蹤應(yīng)運而生。目標(biāo)跟蹤是計算機(jī)視覺和機(jī)器人研發(fā)領(lǐng)域的重要分支,在人機(jī)交互、安全監(jiān)控、自動駕駛、城市交通、軍領(lǐng)域、醫(yī)療診斷等領(lǐng)域都發(fā)揮了重要的作用,其主要功能就是在視頻圖像中遍歷感興趣的區(qū)域,并在接下來的視頻幀中對其進(jìn)行跟蹤光纖數(shù)據(jù)目標(biāo)跟蹤功能無人機(jī)可能會受到敵方勢力或者強(qiáng)風(fēng)等因素干擾,造成不同幅度的振動,從而影響板卡能否正常完成任務(wù)。
無人機(jī)的迅猛發(fā)展,使得無人機(jī)的反制技術(shù)也水漲船高,常見的有電子干擾、無人機(jī)識別對抗等方式。后者采用圖像識別技術(shù),通過在無人機(jī)攝像頭的基礎(chǔ)上加裝AI高性能圖像處理板,在算法的作用下,就具備無人機(jī)識別的功能,為無人機(jī)對抗創(chuàng)造條件。由于無人機(jī)飛行速度極快,因此針對于這樣環(huán)境下的AI識別需要“與眾不同”的圖像處理板。我們都知道,當(dāng)視頻幀率越高時,視頻越能夠體現(xiàn)畫面細(xì)節(jié)信息,而圖像識別算法正是逐幀進(jìn)行識別,因此,攝像頭捕捉到的畫面細(xì)節(jié)越多,識別的精度就會越高。
無人機(jī)夜間工作時需要依靠紅外機(jī)芯進(jìn)行高清成像,而想要具備AI檢測識別的能力則可以通過植入圖像處理板。成都慧視可以根據(jù)需求提供整套的建設(shè)方案,實現(xiàn)快速集成開發(fā)?;垡昖iztra-LE026圖像處理板+MiNO?17紅外機(jī)芯的組合方案,兩款產(chǎn)品均使用小巧設(shè)計,整體組合重量在30g左右,并且都采用小功耗設(shè)計,用在無人機(jī)領(lǐng)域不會過多增加負(fù)擔(dān)。在算法的賦能下,能夠?qū)崿F(xiàn)穩(wěn)定的目標(biāo)檢測識別。Viztra-LE026圖像處理板重量在10g左右,采用了瑞芯微全國產(chǎn)化芯片RV1126,能夠輸出2.0TOPS的算力,功耗不高于4W。能夠以30Hz幀率跟蹤像素2*2的目標(biāo),能夠識別像素為12*12的目標(biāo),且識別率高于85%。而MiNO?17紅外機(jī)芯重量在20g左右(凈重5g(不含鏡頭)),像素分辨率為640*512,采用9/13/25mm三種定焦設(shè)計,支持18中偽彩選擇,功耗小于0.75W?;垡暪怆娀贏I圖像處理的監(jiān)控監(jiān)管方案能夠?qū)崿F(xiàn)安全生產(chǎn)。
物聯(lián)網(wǎng)與人工智能的融合是一個多維度的技術(shù)整合過程,涉及數(shù)據(jù)的收集、分析和智能決策。這一融合的基礎(chǔ)在于如何有效地利用物聯(lián)網(wǎng)設(shè)備收集的海量數(shù)據(jù),并借助人工智能技術(shù)進(jìn)行深入分析和應(yīng)用。物聯(lián)網(wǎng)設(shè)備,包括各種傳感器和執(zhí)行器,是數(shù)據(jù)收集的前線。它們能夠?qū)崟r監(jiān)測環(huán)境參數(shù)、設(shè)備狀態(tài)和用戶行為,生成大量數(shù)據(jù)。這些數(shù)據(jù)是后續(xù)分析和決策的基礎(chǔ)。人工智能在數(shù)據(jù)分析方面的能力是其與物聯(lián)網(wǎng)融合的關(guān)鍵。通過機(jī)器學(xué)習(xí)和深度學(xué)習(xí)算法,可以從物聯(lián)網(wǎng)設(shè)備收集的數(shù)據(jù)中識別模式、預(yù)測趨勢和發(fā)現(xiàn)異常。這些分析結(jié)果為智能決策提供了依據(jù)。RK3399圖像處理板識別概率超過85%。四川工業(yè)目標(biāo)跟蹤
成都RK3399智能跟蹤板提供商。寧夏目標(biāo)跟蹤聯(lián)系方式
用檢測器模型去解決跟蹤問題,遇到的比較大問題是訓(xùn)練數(shù)據(jù)不足。普通的檢測任務(wù)中,因為檢測物體的類別是已知的,可以收集大量數(shù)據(jù)來訓(xùn)練。例如 VOC、COCO 等檢測數(shù)據(jù)集,都有著上萬張圖片用于訓(xùn)練。而如果我們將跟蹤視為一個特殊的檢測任務(wù),檢測物體的類別是由用戶在首先幀的時候所指定的。這意味著能夠用來訓(xùn)練的數(shù)據(jù)只是只是只有少數(shù)幾張圖片。這給檢測器帶來了很大的障礙。而慧視光電定制的目標(biāo)跟蹤算法可以有效的解決這個問題,通過AI自動圖像標(biāo)注平臺SpeedDP的大量模型部署訓(xùn)練,能夠有效解決數(shù)據(jù)訓(xùn)練不足的問題。寧夏目標(biāo)跟蹤聯(lián)系方式