故障診斷可以根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供的信息來查明導致系統(tǒng)某種功能失調(diào)的原因或性質(zhì),判斷劣化發(fā)生的部位或部件,以及預測狀態(tài)劣化的發(fā)展趨勢等。電機故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術對電機設備的絕緣結構和參數(shù)、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監(jiān)測,電機的溫升與各種故障現(xiàn)象相關;4、振動與噪聲診斷法,通過對電機設備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產(chǎn)生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關部位元件的破壞程度。盈蓓德科技能為風機提供早期有效預知傳動鏈故障、軸承損傷、齒輪箱、發(fā)電機等故障的狀態(tài)監(jiān)測解決方案。常州狀態(tài)監(jiān)測系統(tǒng)供應商
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。故障預測模型構建。構建基于智能信息系統(tǒng)的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數(shù)據(jù)信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態(tài)劣化的相關評價參數(shù)、模式及準則。如表征設備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學監(jiān)控系統(tǒng),輔以其他設備參數(shù),通過物聯(lián)網(wǎng)技術實現(xiàn)設備狀態(tài)的遠程感知,基于AI神經(jīng)網(wǎng)絡技術,計算并提取設備音頻特征,從而實現(xiàn)設備運行狀態(tài)的實時評估與故障的早期識別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。杭州降噪監(jiān)測系統(tǒng)電機監(jiān)測和故障預判系統(tǒng)是實現(xiàn)工業(yè)設備數(shù)智化管理和預測性維護的關鍵。
目前設備狀態(tài)監(jiān)測及故障預警若干關鍵技術可歸納如下:(1)揭示設備運行狀態(tài)機械動態(tài)特性劣化演變規(guī)律。設備由非故障運行狀態(tài)劣化為故障運行狀態(tài),其機械動態(tài)特性通常有一個發(fā)展演變過程。需揭示劣化過程及故障變化演變規(guī)律及發(fā)展特點,分析故障產(chǎn)生機理、發(fā)展原因和發(fā)展模式,構建劣化演變機械動態(tài)特性模型。(2)提取設備運行狀態(tài)發(fā)展趨勢特征。在役設備往往具有復雜運行狀態(tài),在長歷程運行中工況和負載等非故障因素造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。若提取到敏感特征分量因子及模式,有望實現(xiàn)典型部件部位分析。
現(xiàn)代化生產(chǎn)企業(yè)為了極大限度地提高生產(chǎn)水平和經(jīng)濟效益,不斷地向規(guī)模化和高技術技術含量發(fā)展,因此生產(chǎn)裝置趨向大型化、高速高效化、自動化和連續(xù)化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內(nèi)外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續(xù)運行的生產(chǎn)設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發(fā)生故障后會引起公害的設備。傳統(tǒng)的事后維修和定期維修帶來的過剩維修或失修,使維修費用在生產(chǎn)成本中所占比重很大。狀態(tài)監(jiān)測維修是在設備運行時,對它的各個主要部位產(chǎn)生的物理化學信號進行狀態(tài)監(jiān)測,掌握設備的技術狀態(tài),對將要形成或已經(jīng)形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產(chǎn)生前制訂預知性維修計劃,確定設備維修的內(nèi)容和時間。因此狀態(tài)監(jiān)測維修既能經(jīng)常保持設備的完好狀態(tài),又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機損失。盈蓓德科技順應行業(yè)發(fā)展趨勢,搭建一套基于旋轉類設備溫度,振動狀態(tài)監(jiān)測、故障判斷的預測性維護系統(tǒng)。
故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎,通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,**終實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預測與健康管理是以工業(yè)監(jiān)測數(shù)據(jù)為基礎,通過高等數(shù)學、數(shù)學優(yōu)化、統(tǒng)計概率、信號處理、機器學習和統(tǒng)計學習等技術搭建模型算法,實現(xiàn)產(chǎn)品和裝備的狀態(tài)監(jiān)測、故障診斷及壽命預測,為產(chǎn)品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡和數(shù)學框架以及準算數(shù)均值比數(shù)學框架指引了稀疏測度構造的新方向,同時發(fā)現(xiàn)了大量與基尼指數(shù)、峭度、香農(nóng)熵等具有等價性能的稀疏測度。基于標準化平方包絡和數(shù)學框架以及凸優(yōu)化技術,提出了在線更新模型權重可解釋的機器學習算法,**終可以利用模型權重來實時確認故障特征頻率,解決了狀態(tài)監(jiān)測與故障診斷領域傳統(tǒng)機器學習只能輸出狀態(tài),而無法提供故障特征來確認輸出狀態(tài)的難題。故障診斷可以根據(jù)狀態(tài)監(jiān)測系統(tǒng)提供信息來查明失調(diào)的原因或性質(zhì),判斷劣化發(fā)生部位,預測狀態(tài)發(fā)展趨勢。常州變速箱監(jiān)測控制策略
盈蓓德科技可以提供故障預判準確率高,更經(jīng)濟更可靠的旋轉設備健康狀態(tài)監(jiān)測方案。常州狀態(tài)監(jiān)測系統(tǒng)供應商
任何設備在故障發(fā)生之前都會出現(xiàn)一些異?,F(xiàn)象或癥狀,如振動偏大,有異常噪音等。持續(xù)狀態(tài)監(jiān)測在預測性維護實踐中起著重要作用,而關鍵的監(jiān)測參數(shù)是振動。設備振動揭示了對組件問題的重要見解,這些問題可能會降低流程質(zhì)量并導致生產(chǎn)停工。通過油溫升高可能是由于軸承運行狀態(tài)異常,也可能是室溫高、散熱慢、潤滑油枯度偏高或運行時間較長等原因。因此,在判斷時可能出現(xiàn)兩類決策錯誤;一是把實際處于異常狀態(tài)的機器誤認為正常狀態(tài),二是把實際處于正常狀態(tài)的機器錯認為異常狀態(tài)。如果同時用幾個特征,如油溫.潤滑油分析和噪聲來監(jiān)視機器主軸承的運行狀態(tài),判斷就較為可靠。由此可見,正確的識別理論是十分重要的。遠程終端廣泛應用于工業(yè)互聯(lián)網(wǎng)、分布式數(shù)據(jù)采集、設備狀態(tài)的在線監(jiān)測,能夠進行前端數(shù)據(jù)清洗和邊緣計算,通過對歷史數(shù)據(jù)趨勢分析、設備數(shù)據(jù)機理分析、統(tǒng)計分析等大數(shù)據(jù)分析,對設備的狀態(tài)有效可靠的健康狀態(tài)評判,從而切實有效的提高設備的維護能力。遠程終端可實現(xiàn)對設備狀態(tài)的自檢,分析計量故障等信息,及時發(fā)現(xiàn)計量異?!,F(xiàn)場監(jiān)測箱開門、斷電、設備運行等異常信息也能夠主動發(fā)送報警信息到監(jiān)測中心,實現(xiàn)設備在線監(jiān)診的準確性、完整性、及時性和可靠性。常州狀態(tài)監(jiān)測系統(tǒng)供應商
上海盈蓓德智能科技有限公司依托可靠的品質(zhì),旗下品牌盈蓓德,西門子以高質(zhì)量的服務獲得廣大受眾的青睞。是具有一定實力的電工電氣企業(yè)之一,主要提供智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等領域內(nèi)的產(chǎn)品或服務。我們強化內(nèi)部資源整合與業(yè)務協(xié)同,致力于智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等實現(xiàn)一體化,建立了成熟的智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)運營及風險管理體系,累積了豐富的電工電氣行業(yè)管理經(jīng)驗,擁有一大批專業(yè)人才。值得一提的是,盈蓓德科技致力于為用戶帶去更為定向、專業(yè)的電工電氣一體化解決方案,在有效降低用戶成本的同時,更能憑借科學的技術讓用戶極大限度地挖掘盈蓓德,西門子的應用潛能。