等離子旋轉(zhuǎn)電極霧化(PREP)通過(guò)高速旋轉(zhuǎn)金屬電極(轉(zhuǎn)速20,000 RPM)在等離子弧作用下熔化并甩出液滴,形成高純度球形粉末。該技術(shù)尤其適用于鈦、鋯等高活性金屬,粉末氧含量可控制在500ppm以下,衛(wèi)星粉比例<0.05%。俄羅斯VSMPO-AVISMA公司采用PREP制備的Ti-6Al-4V粉末,平均粒徑45μm,用于波音787機(jī)翼鉸鏈部件,疲勞壽命較傳統(tǒng)氣霧化粉末提升30%。然而,PREP的產(chǎn)能限制明顯(每小時(shí)5-10kg),且電極制備成本高昂(鈦錠損耗率20%)。較新進(jìn)展中,中國(guó)鋼研科技集團(tuán)開發(fā)多電極同步霧化技術(shù),將產(chǎn)能提升至30kg/h,但設(shè)備投資超1500萬(wàn)美元,限為高級(jí)國(guó)用領(lǐng)域。貴金屬粉末(如銀、金)在珠寶3D打印中實(shí)現(xiàn)微米級(jí)精度,能快速成型傳統(tǒng)工藝難以加工的鏤空貴金屬飾品。江西鋁合金粉末合作
鈦合金是3D打印領(lǐng)域廣闊使用的金屬粉末之一,因其高的強(qiáng)度重量比、耐腐蝕性和生物相容性而備受青睞。通過(guò)選擇性激光熔化(SLM)技術(shù),鈦合金粉末被逐層熔融成型,可制造復(fù)雜航空部件如渦輪葉片、發(fā)動(dòng)機(jī)支架等。其致密度可達(dá)99.5%以上,力學(xué)性能接近鍛造材料。近年來(lái),科研團(tuán)隊(duì)通過(guò)優(yōu)化粉末粒徑(15-45μm)和工藝參數(shù)(激光功率、掃描速度),進(jìn)一步提升了零件的抗疲勞性能。此外,鈦合金在醫(yī)療植入物(如人工關(guān)節(jié))領(lǐng)域的應(yīng)用也推動(dòng)了低氧含量(<0.1%)粉末的開發(fā)。金華高溫合金粉末廠家鈦合金粉末因其優(yōu)異的生物相容性,成為醫(yī)療領(lǐng)域3D打印骨科植入物的先選材料。
液態(tài)金屬(鎵銦錫合金)3D打印技術(shù)通過(guò)微注射成型制造可拉伸電路,導(dǎo)電率3×10? S/m,拉伸率超200%。美國(guó)卡內(nèi)基梅隆大學(xué)開發(fā)的直寫式打印系統(tǒng),可在彈性體基底上直接沉積液態(tài)金屬導(dǎo)線(線寬50μm),用于柔性傳感器陣列。另一突破是納米銀漿打?。簾Y(jié)溫度從300℃降至150℃,兼容PET基板,電阻率2.5μΩ·cm。挑戰(zhàn)包括:① 液態(tài)金屬的高表面張力需低粘度改性劑(如鹽酸處理);② 納米銀的氧化問題需惰性氣體封裝。韓國(guó)三星已實(shí)現(xiàn)5G天線金屬網(wǎng)格的3D打印量產(chǎn),成本降低40%。
NASA“Artemis”計(jì)劃擬在月球建立3D打印基地,將要利用月壤提取的鈦、鋁粉制造居住艙,抗輻射性能較地球材料提升5倍?;鹦窃毁Y源利用(ISRU)中,在赤鐵礦提取的鐵粉可通過(guò)微波燒結(jié)制造工具,減少地球補(bǔ)給依賴。深空探測(cè)器將搭載電子束打印機(jī),利用小行星金屬資源實(shí)時(shí)修復(fù)船體。技術(shù)障礙包括:① 宇宙射線引發(fā)的粉末帶電;② 微重力鋪粉精度控制;③ 極端溫差(-150℃至+200℃)下的材料穩(wěn)定性。預(yù)計(jì)2040年實(shí)現(xiàn)地外全流程金屬制造。鈦合金因其優(yōu)異的比強(qiáng)度和生物相容性,成為骨科植入物3D打印的先選材料。
高密度鎢合金粉末因其熔點(diǎn)高達(dá)3422℃和優(yōu)異的輻射屏蔽性能,被用于核反應(yīng)堆部件和航天器推進(jìn)系統(tǒng)。通過(guò)電子束熔融(EBM)技術(shù),可制造厚度0.2mm的復(fù)雜鎢結(jié)構(gòu),相對(duì)密度達(dá)98%。但打印過(guò)程中易因熱應(yīng)力開裂,需采用梯度預(yù)熱(800-1200℃)和層間退火工藝。新研究通過(guò)添加1% Re元素,將抗熱震性能提升至1500℃急冷循環(huán)50次無(wú)裂紋。全球鎢粉年產(chǎn)能約8萬(wàn)噸,但適用于3D打印的球形粉末(粒徑20-50μm)占比不足5%,主要依賴等離子旋轉(zhuǎn)電極霧化(PREP)技術(shù)生產(chǎn)。梯度金屬材料的3D打印實(shí)現(xiàn)了單一構(gòu)件不同區(qū)域力學(xué)性能的定制化分布。金華不銹鋼粉末
銅合金粉末憑借其高導(dǎo)電性和導(dǎo)熱性,被用于打印定制化散熱器、電磁屏蔽件及電力傳輸組件。江西鋁合金粉末合作
納米級(jí)金屬粉末(粒徑<100nm)使微尺度3D打印成為可能。美國(guó)NanoSteel的Fe-Ni納米粉通過(guò)雙光子聚合(TPP)技術(shù)打印出直徑10μm的微型齒輪,精度達(dá)±200nm。應(yīng)用包括MEMS傳感器和微流控芯片:銀納米粉打印的電路線寬1μm,電阻率1.6μΩ·cm,接近塊體銀性能。但納米粉的儲(chǔ)存與處理極具挑戰(zhàn):需在-196℃液氮中防止氧化,打印環(huán)境需<-70℃。日本TDK公司開發(fā)的納米晶粒定向技術(shù),使3D打印磁性件的矯頑力提升至400kA/m,用于微型電機(jī)效率提升15%。
江西鋁合金粉末合作