收藏查看我的收藏0有用+1已投票0軟件測(cè)試方法編輯鎖定本詞條由“科普**”科學(xué)百科詞條編寫與應(yīng)用工作項(xiàng)目審核。軟件測(cè)試是使用人工或自動(dòng)的手段來運(yùn)行或測(cè)定某個(gè)軟件系統(tǒng)的過程,其目的在于檢驗(yàn)它是否滿足規(guī)定的需求或弄清預(yù)期結(jié)果與實(shí)際結(jié)果之間的差別。[1]從是否關(guān)心軟件內(nèi)部結(jié)構(gòu)和具體實(shí)現(xiàn)的角度劃分,測(cè)試方法主要有白盒測(cè)試和黑盒測(cè)試。白盒測(cè)試方法主要有代碼檢査法、靜態(tài)結(jié)構(gòu)分析法、靜態(tài)質(zhì)量度量法、邏輯覆蓋法、基夲路徑測(cè)試法、域測(cè)試、符號(hào)測(cè)試、路徑覆蓋和程序變異。黑盒測(cè)試方法主要包括等價(jià)類劃分法、邊界值分析法、錯(cuò)誤推測(cè)法、因果圖法、判定表驅(qū)動(dòng)法、正交試驗(yàn)設(shè)計(jì)法、功能圖法、場(chǎng)景法等。[1]從是否執(zhí)行程序的角度劃分,測(cè)試方法又可分為靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試。靜態(tài)測(cè)試包括代碼檢査、靜態(tài)結(jié)構(gòu)分析、代碼質(zhì)量度量等。動(dòng)態(tài)測(cè)試由3部分組成:構(gòu)造測(cè)試實(shí)例、執(zhí)行程序和分析程序的輸出結(jié)果。網(wǎng)絡(luò)安全新時(shí)代:深圳艾策的防御策略解析。滲透測(cè)試 安全服務(wù)
k為短序列特征總數(shù),1≤i≤k。可執(zhí)行文件長短大小不一,為了防止該特征統(tǒng)計(jì)有偏,使用∑knk,j進(jìn)行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個(gè)短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實(shí)施例件數(shù)目除以包含該短序列特征之樣本實(shí)施例件的數(shù)目,再將得到的商取對(duì)數(shù)得到:其中,|d|指軟件樣本j的總數(shù),|{j:i∈j}|指包含短序列特征i的軟件樣本j的數(shù)目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區(qū)分能力。:如果某一特征在某樣本中以較高的頻率出現(xiàn),而包含該特征的樣本數(shù)目較小,可以產(chǎn)生出高權(quán)重的,該特征的。因此,,保留重要的特征。此處選取可能區(qū)分惡意軟件和良性軟件的短序列特征,是因?yàn)樽止?jié)碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會(huì)影響檢測(cè)方法的性能和效率,所以要選出有效的特征即可能區(qū)分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓(xùn)練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設(shè)計(jì)三種不同方案的多模態(tài)數(shù)據(jù)融合方法。軟件測(cè)試應(yīng)用測(cè)試用戶體驗(yàn)測(cè)評(píng)中界面交互評(píng)分低于同類產(chǎn)品均值15.6%。
當(dāng)我們拿到一份第三方軟件測(cè)試報(bào)告的時(shí)候,我們可能會(huì)好奇第三方軟件檢測(cè)機(jī)構(gòu)是如何定義一份第三方軟件測(cè)試報(bào)告的費(fèi)用呢,為何價(jià)格會(huì)存在一些差異,如何找到高性價(jià)比的第三方軟件測(cè)試機(jī)構(gòu)來出具第三方軟件檢測(cè)報(bào)告呢。我們可以從以下三個(gè)方面著手討論關(guān)于軟件檢測(cè)機(jī)構(gòu)的第三方軟件測(cè)試報(bào)告費(fèi)用的一些問題,對(duì)大家在選擇適合價(jià)格的軟件檢測(cè)機(jī)構(gòu),出具高性價(jià)比的軟件檢測(cè)報(bào)告有一定的幫助和參考意義。1、首先,軟件檢測(cè)機(jī)構(gòu)大小的關(guān)系,從資質(zhì)上來說,軟件檢測(cè)機(jī)構(gòu)的規(guī)模大小和資質(zhì)的有效性是沒有任何關(guān)系的??赡苄⌒偷能浖z測(cè)機(jī)構(gòu),員工人數(shù)規(guī)模會(huì)小一點(diǎn),但是出具的CMA或者CNAS第三方軟件檢測(cè)報(bào)告和大型機(jī)構(gòu)的效力是沒有區(qū)別的。但是,小機(jī)構(gòu)在人員數(shù)量,運(yùn)營成本都會(huì)成本比較低,在這里其實(shí)是可以降低一份第三方軟件測(cè)試報(bào)告的部分費(fèi)用,所以反過來說,小型軟件檢測(cè)機(jī)構(gòu)的價(jià)格可能更加具有競(jìng)爭(zhēng)力。2、軟件檢測(cè)流程的關(guān)系,為何流程會(huì)和第三方軟件測(cè)試的費(fèi)用有關(guān)系呢。因?yàn)?,一個(gè)機(jī)構(gòu)的軟件檢測(cè)流程如果是高效率流轉(zhuǎn),那么在同等時(shí)間內(nèi),軟件檢測(cè)機(jī)構(gòu)可以更高效的對(duì)軟件測(cè)試報(bào)告進(jìn)行產(chǎn)出,相對(duì)來說,時(shí)間成本就會(huì)降低,提高測(cè)試報(bào)告的出具效率。
這樣做的好處是,融合模型的錯(cuò)誤來自不同的分類器,而來自不同分類器的錯(cuò)誤往往互不相關(guān)、互不影響,不會(huì)造成錯(cuò)誤的進(jìn)一步累加。常見的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、貝葉斯規(guī)則融合(bayes’rulebased)以及集成學(xué)習(xí)(ensemblelearning)等。其中集成學(xué)習(xí)作為后端融合方式的典型**,被廣泛應(yīng)用于通信、計(jì)算機(jī)識(shí)別、語音識(shí)別等研究領(lǐng)域。中間融合是指將不同的模態(tài)數(shù)據(jù)先轉(zhuǎn)化為高等特征表達(dá),再于模型的中間層進(jìn)行融合,如圖3所示。以深度神經(jīng)網(wǎng)絡(luò)為例,神經(jīng)網(wǎng)絡(luò)通過一層一層的管道映射輸入,將原始輸入轉(zhuǎn)換為更高等的表示。中間融合首先利用神經(jīng)網(wǎng)絡(luò)將原始數(shù)據(jù)轉(zhuǎn)化成高等特征表達(dá),然后獲取不同模態(tài)數(shù)據(jù)在高等特征空間上的共性,進(jìn)而學(xué)習(xí)一個(gè)聯(lián)合的多模態(tài)表征。深度多模態(tài)融合的大部分工作都采用了這種中間融合的方法,其***享表示層是通過合并來自多個(gè)模態(tài)特定路徑的連接單元來構(gòu)建的。中間融合方法的一大優(yōu)勢(shì)是可以靈活的選擇融合的位置,但設(shè)計(jì)深度多模態(tài)集成結(jié)構(gòu)時(shí),確定如何融合、何時(shí)融合以及哪些模式可以融合,是比較有挑戰(zhàn)的問題。字節(jié)碼n-grams、dll和api信息、格式結(jié)構(gòu)信息這三種類型的特征都具有自身的優(yōu)勢(shì)。功能完整性測(cè)試發(fā)現(xiàn)3項(xiàng)宣傳功能未完全實(shí)現(xiàn)。
置環(huán)境操作系統(tǒng)+服務(wù)器+數(shù)據(jù)庫+軟件依賴5執(zhí)行用例6回歸測(cè)試及缺陷**7輸出測(cè)試報(bào)告8測(cè)試結(jié)束軟件架構(gòu)BSbrowser瀏覽器+server服務(wù)器CSclient客戶端+server服務(wù)器1標(biāo)準(zhǔn)上BS是在服務(wù)器和瀏覽器都存在的基礎(chǔ)上開發(fā)2效率BS中負(fù)擔(dān)在服務(wù)器上CS中的客戶端會(huì)分擔(dān),CS效率更高3安全BS數(shù)據(jù)依靠http協(xié)議進(jìn)行明文輸出不安全4升級(jí)上bs更簡便5開發(fā)成本bs更簡單cs需要客戶端安卓和ios軟件開發(fā)模型瀑布模型1需求分析2功能設(shè)計(jì)3編寫代碼4功能實(shí)現(xiàn)切入點(diǎn)5軟件測(cè)試需求變更6完成7上線維護(hù)是一種線性模型的一種,是其他開發(fā)模型的基礎(chǔ)測(cè)試的切入點(diǎn)要留下足夠的時(shí)間可能導(dǎo)致測(cè)試不充分,上線后才暴露***開發(fā)的各個(gè)階段比較清晰需求調(diào)查適合需求穩(wěn)定的產(chǎn)品開發(fā)當(dāng)前一階段完成后,您只需要去關(guān)注后續(xù)階段可在迭代模型中應(yīng)用瀑布模型可以節(jié)省大量的時(shí)間和金錢缺點(diǎn)1)各個(gè)階段的劃分完全固定,階段之間產(chǎn)生大量的文檔,極大地增加了工作量。2)由于開發(fā)模型是線性的,用戶只有等到整個(gè)過程的末期才能見到開發(fā)成果,從而增加了開發(fā)風(fēng)險(xiǎn)。3)通過過多的強(qiáng)制完成日期和里程碑來**各個(gè)項(xiàng)目階段。4)瀑布模型的突出缺點(diǎn)是不適應(yīng)用戶需求的變化瀑布模型強(qiáng)調(diào)文檔的作用,并要求每個(gè)階段都要仔細(xì)驗(yàn)證。第三方測(cè)評(píng)顯示軟件運(yùn)行穩(wěn)定性達(dá)99.8%,未發(fā)現(xiàn)重大系統(tǒng)崩潰隱患。東莞cma軟件測(cè)試
無障礙測(cè)評(píng)認(rèn)定視覺障礙用戶支持功能缺失4項(xiàng)。滲透測(cè)試 安全服務(wù)
的值不一定判定表法根據(jù)因果來制定判定表組成部分1條件樁:所有條件2動(dòng)作樁:所有結(jié)果3條件項(xiàng):針對(duì)條件樁的取值4動(dòng)作項(xiàng):針對(duì)動(dòng)作樁的取值不犯罪,不抽*是好男人,不喝酒是好男人,只要打媳婦就是壞男人條件樁1不犯罪1102不抽*1013不喝酒011動(dòng)作樁好男人11壞男人1場(chǎng)景法模擬用戶操作軟件時(shí)的場(chǎng)景,主要用于測(cè)試系統(tǒng)的業(yè)務(wù)流程先關(guān)注功能和業(yè)務(wù)是否正確實(shí)現(xiàn),然后再使用等價(jià)類和邊界值進(jìn)行檢測(cè)。基本流正確的業(yè)務(wù)流程來實(shí)現(xiàn)一條操作路徑備選流模擬一條錯(cuò)誤的操作流程用例場(chǎng)景要從開始到結(jié)束便利用例中所有的基本流和備選流。流程分析法流程-路徑針對(duì)路徑使用路徑分析的方法設(shè)計(jì)測(cè)試用例降低測(cè)試用例設(shè)計(jì)難度,只要搞清楚各種流程,就可以設(shè)計(jì)出高質(zhì)量的測(cè)試用例,而不需要太多測(cè)試經(jīng)驗(yàn)1詳細(xì)了解需求2根據(jù)需求說明或界面原型,找出業(yè)務(wù)流程的哥哥頁面以及流轉(zhuǎn)關(guān)系3畫出業(yè)務(wù)流程axure4寫用例,覆蓋所有路徑分支錯(cuò)誤推斷法利用經(jīng)驗(yàn)猜測(cè)出出錯(cuò)的可能類型,列出所有可能的錯(cuò)誤和容易發(fā)生錯(cuò)誤的情況。多考慮異常,反面,特殊輸入,以攻擊者的態(tài)度對(duì)臺(tái)程序。正交表對(duì)可選項(xiàng)多種可取值進(jìn)行均等選取組合,**大概率覆蓋測(cè)試用例1根據(jù)控件和取值數(shù)選擇一個(gè)合適的正交表2列舉取值并編號(hào)。滲透測(cè)試 安全服務(wù)