隨著科技的不斷進步,食品檢測設(shè)備也在持續(xù)創(chuàng)新升級。光譜分析技術(shù)、色譜技術(shù)、生物傳感技術(shù)等先進技術(shù)被廣泛應(yīng)用于食品檢測領(lǐng)域,使得檢測更加高效、準確、靈敏。例如,基于納米技術(shù)的傳感器能夠檢測出極其微量的有害物質(zhì),為食品安全提供了更為可靠的保障。同時,智能化、自動化的食品檢測設(shè)備也在逐漸普及,不僅提高了檢測效率,還降低了人為誤差,進一步提升了檢測的可靠性和穩(wěn)定性。然而,當前食品檢測設(shè)備的發(fā)展仍面臨一些挑戰(zhàn)。部分小型食品企業(yè)由于資金有限,難以配備先進的檢測設(shè)備,導致檢測能力不足;一些偏遠地區(qū)的食品檢測機構(gòu),也存在設(shè)備陳舊、更新?lián)Q代慢等問題。此外,食品檢測設(shè)備的標準體系有待進一步完善,不同設(shè)備之間的檢測結(jié)果可比性還需加強。反無人機目標識別用慧視Viztra-HE030圖像處理板。內(nèi)蒙古無源目標識別自主可控
長時間一直進行這樣的圖像標注工作,那無疑是枯燥而乏味的,手酸不說,更多的是精神上的折磨,進而效率大打折扣。但這又是算法提升的必要途徑,無法跳過,當項目緊急時,甚至需要多人加班加點趕進度。這樣的痛苦現(xiàn)狀急需改變!慧視光電的算法工程師為了提高這一的效率,開發(fā)了一個深度學習算法開發(fā)平臺SpeedDP。它的基本邏輯是基于一個手動標注一定量的數(shù)據(jù)集進行訓練,形成一個可用的預選模型(如果已有模型可以直接使用),然后訓練一定階段后,可以評估此模型的能力,如果能夠滿足使用就可以對相同目標的新數(shù)據(jù)集(未進行任何標注)進行AI自動化標注。這一過程的省去了大量需要對新數(shù)據(jù)集的手動拉框工作,同時也在不斷反哺此模型算法,幫助提升性能。浙江流暢目標識別售價AI識別怎么選擇合適的模塊?
成都慧視推出的深度學習算法開發(fā)平臺SpeedDP,它的主要功能就是幫助進行算法模型的測試驗證,進行快速的針對大量數(shù)據(jù)的AI自動標注,然后提升自身算法能力。在無人機智能炮彈測試驗證中,通過對原始算法的模型訓練,能夠不斷評估算法的能力,然后對新的打擊數(shù)據(jù)集目標進行AI自動標注,讓算法在學習中不斷變得聰明。通過SpeedDP的應(yīng)用,能夠極大減少整個測試驗證所需時間,減少人力成本支出,減少項目開發(fā)周期,讓工程師不再為繁瑣的圖像標注浪費時間將更多的精力放在更重要的領(lǐng)域。
這樣的無人機智慧“眼”可以通過搭載吊艙實現(xiàn),吊艙內(nèi)置各種規(guī)格的攝像機,能夠?qū)崿F(xiàn)多角度觀察。而智能化則可以在吊艙的基礎(chǔ)上植入高性能AI圖像處理板。圖像處理板能夠?qū)z像機獲取的圖像進行AI智能分析,這樣無人機就能夠自動識別缺陷,然后進行信息留存、回傳。在這個領(lǐng)域,成都慧視光電可以根據(jù)需求進行多接口圖像處理板的定制,選擇成都慧視開發(fā)的RK3588系列圖像處理板,支持選擇SDI、CVBS、LVDS、USB、cameralink等接口。RK3588擁有6.0TOPS的算力,能夠在各種復雜環(huán)境進行穩(wěn)定工作。板卡和識別算法的強強聯(lián)合下,無論白天黑夜,無人機都可以實現(xiàn)自助巡檢,就不需要過多的人工參與。也是一種降本增效的舉措。監(jiān)控攝像頭目標識別慧視可以做。
這個過程中,采用無人機是個高效的辦法。無人機高空觀察能夠獲得更多的視野,并且針對許多人無法到達的地方,還能夠快速抵近觀察,防止驚擾。此外,更高效的措施是在無人機上加裝具備圖像處理的板卡,這時候無人機就是一個智慧眼,它能夠在算法的輔助下,對野豬等動物進行AI搜尋,并且具備目標鎖定功能。當無人機發(fā)現(xiàn)疑似目標就可以抵近觀察,一旦確認目標就能夠立即鎖定跟蹤,這樣,地面圍剿人員就可以快速像區(qū)域靠攏,對野豬進行逮捕驅(qū)逐。這樣的無人機智慧眼可以用成都慧視開發(fā)的Viztra-HE030圖像處理板來實現(xiàn),這塊板卡采用瑞芯微旗艦級芯片RK3588,算力能夠達到6.0TOPS,處理村落、樹林等復雜環(huán)境不在話下。同時,針對于野生動物目標識別算法的AI訓練,成都慧視還可以提供專門的AI訓練平臺SpeedDP,通過大量的模型訓練實現(xiàn)AI自動圖像標注,進而幫助提升算法識別性能。無人車避障選擇什么樣的識別模塊?廣東數(shù)據(jù)目標識別定制
無人機雙光吊艙用目標識別圖像處理板找成都慧視。內(nèi)蒙古無源目標識別自主可控
識別算法的性能提升依靠大量的圖像標注,傳統(tǒng)模式下,需要人工對同一識別目標的數(shù)據(jù)集進行一步一步手動拉框,但是這個過程的痛苦只有做過的人才知道。越多素材的數(shù)據(jù)集對于算法的提升越有幫助,常規(guī)情況下,一個20秒時長30幀的視頻就多達兩三百張畫面需要標注,如果視頻時長或者視頻的幀速率增加,需要標注的幀畫面將會更多。小編曾試過標注一個時長為1分30秒幀速率為60的視頻,需要標注的畫面竟然多達5000多張,當我標注到500張的時候,整個人都已經(jīng)麻木,并且出現(xiàn)情緒波動,望著剩下的4500多張待標注畫面,看著都頭皮發(fā)麻,怎么都不想繼續(xù)了。內(nèi)蒙古無源目標識別自主可控